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hard-sphere system covering the whole r-range 
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Received 14 January 1991 

AbslraeL We present explicit formulae which allow an economical but very accurate 
evaluation of the pair-distribution functions p,(r) for the whole range of distances of 
an additive binary hadsphere system within the Percus-Ywick approximation. The 
method is based on the fact that for such a system the Laplace-transforms &(I )  of the 
g&) are known analytically. The inversion of the Laplace-transform is performed in two 
different ways: the fin1 one-preferably applied from the contact up lo distances of a few 
diametem-calculates the inverse by means of an exact analytical procedure, whereas the 
other one-very useful for inlermediate and large distanc-uses an asymptotic method, 
truncating a rapidly converging series expansion. In the overlap region of the two 
methods we can obtain perfect agreement (i.e. up to machine precision), including the 
first few terms of this expansion. Bath formulae are presented as general as possible to 
allow an easy extension to other binary hardcore systems. 

1. Introduction 

Ever since the first successes of liquid state theory at the end of the fifties, hard 
spheres (Hs)-one- as well as twocomponent systems-have played a central role in 
this field: starting from the first simple models [l], followed by the first computer 
simulations (which were performed on hard-core systems [Z]) they became in the 
following years a good, though simple model to describe the structure of liquid 
systems, in particular simple liquid metals [3]. Although liquid-state methods have 
by now become much more sophisticated and the description of liquid systems by 
simple pure HS models is by far bypassed, these systems still play an important role 
in present day liquid-state physics as is shown in the following examples: 

(i) They are used as reference systems in one- and two-component variational 141 
and perturbative methods [SI. 

(ii) HS bridge functions are used-due to the universality hypothesis of Rosenfeld 
and Ashcroft [6]-in thermodynamically self-consistent integral-equation approaches, 
such as the modified HNC 16.71 and the reference HNC [SI. 

(iii) Recently, non-additive mixtures of hard spheres have been used to describe 
highly non-ideal liquid and amorphous mixtures 19, lo]. 

One of the main reasons why HS systems are so attractive in liquid-state physics 
is due to the fact that their direct correlation functions c ( r )  (or cij(r), for a mixture) 
may be calculated analytically within the Percus-Yevick (PY) approximation in the 
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one-component case [11,12] as well as in the addhive binary [13] or even multi- 
component (141 case, where ‘additive’ means that the HS diameters Rc (R, = Ri) 
have to fulfill the relation Rij = f (Ri  + R j ) .  Such a solution for the cij(r) may, by the 
way, also he obtained for the hard-sphere k-Yukawa-tail ( H S Y ~ )  system in the mean 
spherical approximation 115,161. Yet, in the applications (variational or perturbative 
calculations) the main interest is rather focussed on the pair-distribution functions 

These functions may be obtained in different ways: the most direct one (and, 
at the same time, the most expensive one for what concerns the computing time) 
is to solve the PY integral equations numerically (e.g. by using Gillan’s algorithm 
[17]). This procedure has the only advantage of being the most general one, i.e. it 
allows us to obtain structure functions for general (i.e. non-additive) binary HS systems 
(9, IO]. However, it is demanding from the point of view of the computational and 
programming effort and requires a continuous control of the numerical parameters 
to ensure accurate results. 

A more economic procedure is to determine first the analytic Fourier-transforms 
of the cc(r) and then perfom the numerical transformation (using a Fast Fourier 
technique) to obtain the &(r) via the well known expressions (see e.g. (181 for an 
accurate implementation of this approach). This method is faster than the numerical 
solution of the PY equations hut is not superior with respect to the numerical accu- 
racy. Indeed, both these methods may be affected by a loss of numerical accuracy, 
in particular at large distances; that can be troublesome, for example, when high 
momenta of kij(r) - 11 are required. 

For completeness sake we should mention the Perram method (191: it is based 
on a recursive numerical integration of a one-dimensional linear integral equation 
for gii(r). This equation is obtained within the Baxter factorization method [20] to 
solve the mean spherical approximation and the algorithm is not limited to pure HS 
systems. This method is very simple to program hut it has two main drawbacks: the 
computational cost increases quadratically with the number of the grid points and 
the non-uniform accumulation of numerical errors makes it not suitable to obtain 
high accuracy at large distances. Only for pure HS a modified Perram method has 
been proposed by Glandt and Kofke [21] which reduces the problem of accumulation 
of errors and makes the computing time a linear function of the number of grid 
points. However, this optimized version cannot be easily extended to other interaction 
potentials. 

Application of perturbative or variational methods requires yet a very fast and 
accurate evaluation of the pair distribution functions, since they might be demanded 
a hundred times or more in the determination of the reference system parameters. 

The method which we shall present in this paper for the determination of the gij(r)  
is a combination of two different representations of these functions obtained from 
the analytic solutions of the PY equations. These solutions provide us also with closed 
forms of the Laplace transforms gij(r) of the gij (r)  in terms of basic functions, i.e. of 
polynomials and exponentials. The first representation-which we shall call hencefor- 
ward the shell-structure expression (%)-was already worked out by Wertheim [ll]: 
the inverse Laplace-transform is performed exactly by using the residue theorem. The 
special form of the integrand allows a shell-byshell analytic integration, where the 
lower hound of a shell is marked by an integer-linear combination of the R,. The 
application of this approach is limited to distances up to five or six times the core 
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radius by the rapidly increasing complexity of the expressions (especially in the binary 
case) and by numerical accuracy requirements. This method has already been applied 
SucCeSSfully to the onecomponent case by Smith and Henderson [22] and extended 
to larger distances and to the HSY case by one of the authors [23]. Generalization 
to the binary HS case is straightfonvard (although the formalism is, of course, much 
more complicated) and has been presented for the first time by Throop and Bearman 
[24]; however, they did not give explicit expressions. The next contribution to tackle 
this problem has been made by Leonard et a1 [25]: their formulae are general and 
may be appibd-at ieast in principle-up to any distance; yet we felt that it would 
be useful to re-examine their prescription to take care of many repeated expressions 
to get a substantial saving of computing time. Moreover, especially beyond a certain 
distance this method is no more economical. Finally, the cited authors do not discuss 
the numerical problems connected to this method (i.e. up to  what distances their 
procedure may be applied without loss of numerical accuracy). 

tiere we present optimized and generai expressions for the SE. -we mean op- 
timization and generality in the following sense: (i) optimization guarantees a fast 
numerical evaluation on a computer; (ii) generality makes possible an easy imple- 
mentation of the relevant formulae for other hard-core systems (as HsYk or charged 
HS systems). 

The first aim, optimization, is obtained by a close study of the structure of the 
expressions: we extract all the time-consuming calculations and manipulations which 
are common to the three different g$(r)  ( (ij) = 1-1,2-2 and 1-2); and even between 
those different cases symmeuy relations may be detected, which help to avoid redun- 
dant calculations and to minimize the computing time. This should make applications 
for variational and perturbative calculations very economical and therefore attractive, 
even if the evaluation of the g&r) is requested vely often. The second aim, generality, 
" . 1 p m L . . o  ,I".,. U,.. L a c c  Ln1a.L LA,.. C"p'c""1""" I", U,.. bii,', ,U, a _ > , I  JJ'L..", a,.. ,U,- 

mally identical to those of the simpler HS system: only the degree of the polynomials 
appearing in the expressions is of two degrees higher. The formulae presented here 
are enough general, so that the corresponding expressions for the HsYl case can be 
easily evaluated following the same scheme. 

The second method is based on the fact that the radial distribution functions may 
Coch '?E 

expression is obtained by an elementary application of the residue theorem. Since 
the terms with the smallest damping are the leading terms for large distances, we refer 
to this formula as the asymptotic expression (AE). The advantage of this method is 
that the functional form for different terms is always the same and each additional 
term added to the above expansion requires a fixed amount of computational effort. 
The price we have to pay is that the coefficients and the parameters required for 
this expansion have to be obtained numerically from the roots of a non-algebraic 
equation; also this method is not new (it was discussed, for example by [26] in the 
case of a one-component system of HS). However, as far as the present authors know, 
it has not been applied yet to the case of a mixture and, more important, it was never 
combined to the SE method to derive a practical way of generating values of the PDF 

Indeed, these two algorithms are complementary. The SE may be used (with the 
expressions given here) for r-values less than (oiRi + azR,), ai + a2 = 7. Beyond 
this distance this method is not recommended: (i) the number of contributions to the 
sums and the complexity of the expressions has increases drastically and (ii) a loss in 

,..ini-n+ns f-n- thn fmnrr +hn+ rLn n---o--i--c C,.. rLn i: I.\ n r . n v <  r..cto- n m  <,.- 

be rep:sent& as a series of osci!!ati!?g expo!?entia!!y damped fxictions. 

over the who!e range of distances, 
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numerical accuracy may be expected (depending on the number of significant digits of 
the computer used). On the contrary, in the AE we already obtain good convergence 
at large r with a rather small number of poles. With decreasing r the AE requires an 
increasing number of terms for a good convergency. In particular, due to a Gibh's 
phenomenon the AE is not suitable to represent the gij(r) near and at the contact. 
However, we can show that there is an overlap region where both methods are about 
equally favourable concerning computing time and numerical accuracy and where it 
is possible to match the two expressions with arbitrary high accuracy. In this way we 
obtain an efficient and essentially exact representation of the PY radial distribution 
functions for all the distances. 

The paper is organized as follows: in the next section 2 we review both methods 
for the determination of thc gij(r), the following section contains the discussion of the 
results: a comparison of the methods and investigations on the applicability of the 
respective approximations. The paper is closed by conclusions and by an appendix 
which contains the more complex expressions. 
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According to Throop and Bearman [24] l /D(r)  may be expanded for sufficiently 
large %(I) in the form 

so that we obtain for the pair-distribution functions in r-space 

(17) 

The integrations in (15)-(17) have to be taken along a line in the right half-plane 
(RHP) of t hc  complex I-plane, parallel to the imaginary axis and to the right of all 
the poies of the integrand, i.e. the four zeros of S(I), f, ji3j. 

We start treating expression (15) for gll(r) and obtain 

a ,  = 1, , _  . , n  + 1 a, = n + 1 - a l ,  .. . , n  + 1. (18) 

The Q,,,,,,(f), being products of L , , ( f ) , L l ( f )  and L , ( f ) ,  are polynomial of order 
2[2n + 2 - (oil + a,)] in t .  

We now make closer investigations on the integrals in (18), picking out one single 
summand: 

fi\ \*! If .. r ' < (eiRi + eiRi) we have! keeping the integrand finite, to close the 
integration path over a semicircle in the RHP, thus forming a contour which contains 
no poles of the integrand. Therefore the summand will not contribute to gtl(r). 

(alR1 + aZR2). we have to close the integration path with a 
semicircle on the left half-plane (LHP), a contour which contains all the four poles 
of S ( f ) .  In this case we shall obtain contributions to g , , ( r ) ,  which can be evaluated 
by means of the the residue theorem. Therefore we are left to calculate the residues 
Ri,,,,, of terms as {fQn,olo2 exp[f(r -A')]/S(ntl)(l)) for I = li, where we use a short- 
hand notation X for a lRl  + a,R,: 

(ii) However, if r 
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We shall obtain expressions containing linear combinations of products of the 
&( I ) ,  i = 0 , 1 , 2  and their respective derivatives, products and quotients of S ( I )  and 
its derivatives (all of them taken for f = f i )  and powers of [r- (a1& +azR2)]; we shall 
express them as suitably chosen coefficients ai and b/:,,,, so that we finally arrive at 
the following expression for gll(r) 

n 

x ~ b ~ : o , 0 2 [ r  - (al& + a2Rz)lJ@[r - (%RI + & ) I .  (20) 
j = O  

The coefficients a; and b/&, and the explicit form of the polynomials Qn,,l,,2(f) 
are compiled in the appendix. In fact we have manipulated the expressions (15)-(17) 
in such a way that the ai are the same in all three cases which helps us to save 
computing time. The range for a, and a2 in the above sum is the same as in (18) 
and O(x) is the usual Heaviside step function, being 1 for positive argument and 0 
for negative x .  In analogy to the one-component case (cf [22,23]) we rewrite (20) as 

where we have defined 

(22) 

In contrast to the onecomponent case, where the shell structure was very simple 
(i.e. given by the multiples of the HS diameter) the situation is, except for the trivial 
case RI = R,, in the binary case more complex: given RI and R, we have for every 
k e d  n-value [(n + l)(n + 4)/2] n-subshells, characterized by a, and 01, 

Sn,u,,,.2 := {r I r > ( a l R l  + a,Rz)} 1 < a, < n + 1 n + 1 - a, < a, < n + 1. 

(23  

In the binary case n looses its importance of an ordering parameter of the shells. 
(i) An n'-subshell may extend from smaller r-values than a n-shell even though 

(ii) Above all, two subshells (S,,,,,,,S~,,,Ia.;) (n # n') may coincide, since for 

(ii) A considerable overlap of n- and n'-subshells (n # n') may occur especially if 

The smallest left boundary of the n-subshells is given by 

n' > n. 

their identity it is sufficient that a, = a; and a, = a;. 

the values of RI and R, are quite different 

rwl = 0,,01* min(u,R,+o,R,] l < a , < n + l  n + l - a , < a , < n + l .  (24) 
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The expressions presented have been evaluated up to n = 6; therefore, the use of 
these expressions is limited to r-values, satisfying 

r < ru,w (25) 

If this is not respected, contributions of higher subshells would be neglected and 

For the determination of the corresponding equations for gZ2(r)  we proceed in a 
would consequently yield false results. 

similar manner. We obtain an equivalent expression to (22), namely 

(26) a2 = 1, ... , n +  1 at = n + 1 - a 2 , .  . . , n  + 1. 

Note the different range of the ai-values compared to the 1-1 case. The coeffi- 
cients ai and b,:,,,, are obtained from residues similar to (19), where the Qn,e,e2(i) 
are replaced by Q*,n,o,02(i) (for their explicit form see the appendix). The subshell 
structure is given similar to (23) by 

sn,,,n,02 := {r  I r 2 (-,RI + a2R2))  

- j  i 

- 
1 < a2 < n + 1 n + 1 - a2 < al < n + 1. 

(27) 

Figure 1 displays as an example the PDFS g.Z2(r) = )-,, , , ,g~~o,,,(r) for different 
n-values for one special system. 

Flgum 1. PDFs gn(r) (full line) and gF(r )  = ~: , , , , ,g& , , , ( l )  for n = 0 , .  . . ,4, for the 
binary HS system, defined via the parameters RI = I ,  Rz = 1.2. c1 = 0.9 and 7 = 0.6. 
The different functions are labelled by the respective multiplier, unless it  is unity. 

We finally turn to the expressions for g12(r) .  We define, for reasons given below, 

U ( I )  = rL&) (28) 
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and obtain for g,,(r) 
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q = 1 ,  . . . , 2 n +  l ( 2 )  a 2 = 2 n + 2 - a , ,  . . . , 2 n +  l ( 2 )  (29) 
where '(2)' in the range of the ai means 'every second value'. Again the Qn,,,,2(~) 
are products of Lo(f),Ll(1) and &(I). With the same argumentation as above we 
perform the complex integrations by means of the residue theorem 

arriving at an expression similar to  those of (21) and (26) 

... 
i=l j = o  

'Il = 1,  . . . , 2 n  + 1 (2) a, = 2 n + 2 - a 1 , . . . , 2 n +  1 (2). (31) 
The coefficients 6&,,, and the explicit form of the Qn,Q,,2(c) are compiled in the 

appendix. The subshell structure is given by 

S",o-1a.2 := Ir I r 3 (a14 + azR2)/21 
1 < a, < 2n + l ( 2 )  2 n + 2 - a ,  < a2 < 2n + l (2 ) .  (32) 

The remarks made about the subshell structure for the 1-1 case holds, of course, 
also for the 2-2 and 1-2 subshells, despite of the different construction . .  prescriptions. 

Since thc cxplicit determination of the coefficients U:, b&,,,, 6!&,l and 6k:mle2 
in (22). (26) and (31) is a rather technical problem, we have transferred it to the 
appendix. 

The expressions for the g$,-?(r) in (22). . .  (26) and (31), as well as the prescriptions 
of how to calculate the coefficients a:, b&,,,,6,$~e,,, and 6,$fm,a2 are sufficient to 
calculate the PDFS g+(r) for any r; we have evaluated the expressions up to n = 6, 
a value which might be considered as a good compromise: on the one hand the 
expressions have become rather complex and might therefore be affected by some 
loss in numerical accuracy; on the other hand, up to this n-value the procedure is 
about as economical as the AE (cf section 2.2). 

Concluding this chapter we want to point out the advantages of this method 
compared to the former approach by Leonard a a1 [2S]: when working out the 
expressions presented in the appendix we have tried to find out as many parallels 
between the three cases (1-1,2-2 and 1-2). This we have done firstly by separating- 
when calculating the residua (19)-into two parts: one containing S(t), u ( f ) ,  I and 
its derivatives and the other containing the Li(l)'s. The first part is identical for 
all three cases, which saves a lot of computing time since these expressions have to 
be evaluated only once. The second part has the same algebraic structure for all 
three cases and, in addition, many terms occurring in these expressions may be found 
more than once, making the algorithm even more economical. All the derivatives 
with respect to f, occurring in these expressions have been calculated to the highest 
possible order even though in most cases it would not be necessary due to the actual 
algebraic degrees of L,( f ) ,  S(I) and u(f) in I; this was done foreseeing an extension 
of this method to an HSYl system, where these polynomials are throughout of two 
degrees higher than in the HS case. These results will be published elsewhere 1261. 
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2.2. The asympfofic method 

Let us start again with the Laplace-transforms & ( t )  in equations (1)-(3). The direct 
representation of q&r)  by means of a contour integral (inverse Laplace. transform 
formula) is: 

where 6 is an arbitrary positive number (the poles of g&t) must be in the LHP). 
For r C R$ we can evaluate the integral (33) by using a contour integration in the 

RHP and we obtain gil(r) = 0. For r > Rii we have to use a contour closing in the LHP. 
In general D(t) will have an infinite number of zeros in the LHP. The contributions 
of the residues from all these poles of gij(f) will give a series representation of q i j ( r ) .  
it is easy to check that the gij(t) nave a aoubie poie for f = 0, contributing i to the 
g&). The other poles have to be determined numerically as the zeros of the function 
D ( f ) .  In the onecomponent case all the poles are simple [26]. In the two-component 
case an additional double pole (0 (lying on the negative real axis) appears. The other 
poles are simple and occur in conjugate pairs (fn,f;). 

Thus, we can write the PDFS as: 

where 

and 

are the contributions of the pair of simple poles and of the (possible) double pole on 
the negative real axis. 

Since. a simple (or a double) pole of g&r) corresponds to a simple (or double) 
zero of D ( f ) ,  we obtain, by expanding the denominator in 'Aylor's series around I,, 

D(t )  = D1(fn)(f  - 1,) + fDZ(t,)(f - t,,)2 + O(( f  - 1 n ) 3 )  (37) 

where 

Dl(fn) = L&) - [L;(f , )  +R,L,( t , ) ]  ernRI - [ L k )  + RzLz(f,)]e'"RZ 

D2(f.) = L;(t.) - [Ly(f,,) + 2R,L;(fn) + R:L,(f , ) ]  ernRI 

I rclf, \ J I D  I I? \c (+  \letdRs+R2) ma 
T L* I'nl T I"l 7*'2/"\ '"/I  \>"J 

- [Lipn) + 2RzL;(f,) + R:L2(lJ] ebR2 
+ [S"(f,) + 2(R1 + RZ)S'(fn)  + ( R I  + R2)'S(f,)] e'"(RICR2) (39) 
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3. Comparison of the two methods 

In this section we want to show how the formulae of the previous section can be used 
to evaluate the PDF over the whole r-range with very high precision. In addition, we 
briefly discuss the optimal choice of the best matching point as well as the relative 
efficiency of the two expressions. 

In figure 3 we have depicted the differences between the PDFS gij(r) calculated via 
the AE (taking into account an increasing number of poles) and the SE. We find in the 
example there shown as well as in other systems investigated that, up to the sixth shell 
included, the two methods are in excellent agreement Proceeding to higher r-values 
the SE becomes less attractive: the expressions for the coefficients ai ,  b , $ ~ o , , 2 , 6 ~ u , ~ z  
and become increasingly complicated, their evaluation becomes rather cum- 
bersome and the corresponding implementation of these expressions rather difficult. 
The principal character of the SE was already demonstrated in figure 1: the subshell- 
PDFsgi(r) = ~,,,,,g!,,,,,z(r) are all either positive or negative and for largerr-values 
these functions may reach a considerable magnitude. Since thegjj(r) are built up from 
differences of a sequence of positive and negative functions (and the number of these 
function increases in a nonlinear way with distance) it is not surprising that beyond 
a certain r-value numerical accuracy can no more be guaranteed. For example, for 
r = 7, the PDFgZZ(r) (of our example system) has a value of 1.0287, a value which is 
obtained by summing over 42 subshell PDFS g,$,,u2, the largest of which have values 
ok g&(7) = 262.10, g&(7) = -347.42, &(7) = -196.59 and g;:,l(7) = 148.34. A 
further disadvantage of the SE for larger r-values stems from the computing time: the 
number of suhshells which have to be included for a given r-value depends on the 
values of RI and R,. This number increases in  any case with r and enhances drasti- 
cally the computing time. Therefore we may conclude that? for the cases relevant to 
usual applications, the SE is no more attractive for r-values beyond the sixth shell. 

With the AE we have the following advantages: the computing effort is constant or 
even decreasing with increasing distance (asymptotically, only the pole closest to the 
imaginary axis contributes to the value of g+(r)). The expressions needed are simple 
and straightforward to implement. However, the poles have to be found numerically 
and near the contact quite a large number of poles has to be taken into account. 
However, figure 3 demonstlates chat in practicai applications only a limited number 
of poles has to be included if the PDFS are required for distances larger than, e.g., 
three diameters. Including more than seven poles in our example does not change the 
result. This is not surprising, since it may be shown that the difference in magnitude 
of the contributions of two poles depends on the exponent of their real parts. Looking 
at figure 2 we see that there is a rather large gap between the first seven poles and 
the remaining poles, resulting in practically negligible contributions of the poles i = t8 
and the t;, i = 9, 10,. . .. Moreover, the other poles which belong to the same branch 
as ti, i = 1 , .  . . , 7, make also a negligible contribution to the total PDF. 

In general, the number of poles that have to he taken into account to get 
a given precision inside a shell is a function of the physical parameters (i.e. the 
packing fraction, the concentration and the ratio of diameters). However, we have 
numerically checked that, within the physically interesting range (0.1 < c1 < 0.9, 
1.01 < RJR, Q 1.6 and 0.01 < q < 0.6). the maximum relative difference between 
the gv(r) obtained from the AE and the SE formulae remains less than 1% in the sixth 
shell if contributions from the first six poles have been summed. This means that for 
all the practical purpases one can safely use the SE up  the sixth shell and the AE with 
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9 g * l ( I )  

3 

P@re 3. Difference of the PDFS and g,""."(r) (including n poles), for the HS 
system defined in figure 1. The line symbols are: n = 1 (upper panel), n = 2 (full line) 
and n = 4 (dotted line) (middle panel) and n = 6 (full line) and n = 7 (dolled line) 
(bottom panel). Again multipliers are indicated. 
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up to six poles from the seventh shell onward. With these parameters, a reasonable 
compromise is obtained between the opposite requirements of accuracy and velocity. 

We intend to give a detailed discussion of the numerical implementations and a 
full evaluation of the computational efficiency elsewhere [B]. 

4. Conclusions 

In this paper we have presented two complementary methods which furnish an ac- 
curate and efficient mean to determine the PDFS of an additive binary HS system 
over the whole r-range. These methods, which are based on the knowledge of the 
analytic expressions of the Laplace transforms of the PDFS perform the inversion in 
two different ways. Each of these methods is prefelably used in a particular range 
of distances, being less reliable or not practical in the complementary range. In the 
intermediate range both methods may be applied successfully and can be matched to 
give perfect numerical agreement These methods provide a powerful tool to evaluate 
the PDFs of binary hard-core mixtures .in a very rapid and efficient way. They can be 
used in variational or perturbative calculations or other tasks in liquid-state physics. 
In this paper we have put particular effort in presenting expressions general enough 
to allow an easy extension to the binary HSYk system, where the analytic expressions 
have the same algebraic form. 
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Appendix 

The parameters a:, b!&t, 6!:iulu2 and 6i:iu,,, are determined by evaluating residues. 
We generalize (19) and (30) to a unified expression 

where for the 1-1 and 2-2 case we simply put 

u(1) = 1 (A2) 

and for the 1-2 case we use U ( I )  of (28). (Even though u ( f )  is for the binary HS case 
a polynomial of order two or less, we take into account in the following formalism 
derivatives of all orders, since these expressions may he required in applications to 
other systems, as e.g. in a HsYk-system). We perform the derivatives in (Al), leaving 
for the moment the polynomials Q,,,,,,(r) unspecified. The obtained expressions are 
grouped in powers of [r - (a,R, + azRz)] for the 1-1 and 2-2 cases and in powers of 
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[r-(alR1 +a2R2)/2] for the 1-2 case, giving us the coefficients ai and b,&,,*,&$&e2 
and 6,&,,2. We separate the residues (Al) into two factors: one part containing S ( f ) ,  
u ( f )  and f and their respective derivatives and the other containing Q,,,,,,(i) and 
their derivatives. The first simplification is done by defining a common factor for all 
three cases and for every n: 

G Kahl and G Pasfore 

Note that an upper index i means here and in the following equations evaluation 
of the right-hand side for f = 1;. 

Leaving the Q,,,,,,(I) for the moment unspecified, we obtain the formulae (A4) 
to (A10) as follows: for the like cases U has to he put to unity; for the 1-1 case the 
Q's are defined in (A14). The 2-2 expressions are obtained by simply putting a tilde 
( - )  over the b's and Q s  (from (A15)). The 1-2 case is discussed below. We obtain 
the following expressions for n = 0,.  . . ,6, omitting the argument in the polynomials: 
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n = 6  
O , i  b5.j boio,oz = Q6,01& 6,oTjoz = 3(Q6,0toic17 + 2 Q k w a P )  

b4.' 

b31i 

b2.i 

bl,i 

6 , 0 r 0 2  = -5(7Q6,01~zCz4 - 3Q~,o,0tC17 - 3Q&la2~i) 

b,o,m2 = -5(7Q6,0,01c26 + 28e&0102c24 - @&1o2 17 

6 ,opz  = -(7Q6,a1a2CZY + 1 0 5 ~ ~ . o r o 2 C 2 0  + 21@~,0t02c24 - 3~&,azc17 - 15a:,eZut) 

6 , a m  = -(7Q6,0~o~c34 + 14&,aro2C2~ + 1°54&~02c20 + 1 ~ & , a z c 2 4  

c - 4 Q ~ o r o * ~ ~ )  

- 15Q&,02~17 - 6e&,o,uf) 

+ 35@~0tazcz4 - 3Q~0,0zc~7 - Q$,,,Ui) 

bo,' 
6,0,az = -(Q6,u,~~~38 + 7 & , ~ , ~ 2 C 3 4  + 7f?~,a,02C2~ + 35~,&02Cz6 

(A10) 

where the ci are defined for both cases: 

c1 = 1 - t S 2 / S I  
c2 = 2 - 31s2/s, 
C j  = (IS3 + 3S,C,)/S, 
c4 = 1 - 2tS,/SI 
cs = 4 - SlS2/S, 

c7 = 2 - 5iS2/S, 
cg = (IS4 + 2s3c7 - 15s;/s,cl)/s, 
cy = (US, + 3S,C,)/S, 
CIU = 1 - 3iS2/S1 

c12 = (is4 + 4s3clu - 3 ~ ~ / ~ l c , t ) / ~ l  
CI3 = 4 - 7iS2/S, 

Cl, = (IS, + 5S4C," - 5S3Cl4 + loss~/s:cl)/s, 

C16 = (41S3 + 3S2C,3)/SI 
CI7 = 2 - 7iS2/S, 
CI8 = 3 - 41s2/s, 

CZU = 8 - 9ts2/s, 

CZI = (IS3 + ~,C, ) /S ,  

cz3 = 1 - 4iS2/S, 

C0 = (4ls3 + 3s,C,)/s1 

cI1 = 6 - 7iS2/S, 

c14 = (2s3 + 3s,c~3)/s~ 

cIY = ("4 + =3'17 - 7s~/slcl&!)/sl 

cZ2 = (&S, + 15S4cI7 - 7OS,c2, + lOSS~/S~c,,)/S, 

'24 = ("3 + 3s2c4)/sI 

c2, = (IS0 + 3s5c,, - 35S4C2, + 70S3/S1(-S3C2, + 6s:/s,c2) - 945s,4/s:cl)/s, 
C26 = (IS4 + 4s3C23 - 12$/SlC2)/si 
CZ7 = 4 - 9iS2/S, 
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c2n = (as3 + 3Szc27)/S1 
c,, = ( 3 4  + 15s4c, - 2aS3C, + l35s;/S:c5)/s, 

= + 3s~27) /s i  

c3, = 2 - 91S2/S1 
c32 = 3 - 51s2/s, 
Cj3 = 10 - 1liS2/S, 

C34 = (is, + - 1W4C3u + 4os3/S,(-s3C31 + 9S:/slC3,) - 135$/s:C33)/sl 
‘35 = (“4 + @3‘31 - 1ss:/s1c32)/s1 

c36 = + 9s2c7)/s~ 

c37 = 8 - 111s2/s1 
c3, = (IS, + 7S6C2, - 14s5C3, - 35s4c3, + 35S3/S,(4S3c3, - 45s;/s:c3,) 

+ 10395s,j/s;C,)/s, (All)  
and S, stands for the ith derivative of S( t ) .  

sjmply replacing the c,’s by the d,‘s (defined below) and the Q s  by Qs (cf (A15)): 
For the determination of the bk$lo2 we can use the same equations (A4)-(A10), 

d ,  = UC, + u’f 
d4 = uc4 + u‘I 
d, = uc, + u’c6 - 3u”c4 - ~ “ ‘ f  

d , ,  = uclu + u‘f 
d,, = uc15 + SU’c,, + 5u”c, - 211”’~~ - umI 

d,, = UC], + 2u’t 

d, = UC, -+ 2u‘l 

d ,  = uc, - &‘c4 - 3u“l 
d ,  = uc3 - U’C, - U”I 

d, = UC, + 2u‘l 
d ,  = uc, - fu’c, - $ P I  

d,, = uclz + 2u’cy - $I”c, - W‘I 5 

d, ,  = uc16 - 4u’clu - 2u”1 
* ... d , ,  = U C ~ ,  + u’c,, - . i u ” ~ ~ ~  - ~ u ” ’ I  

d ,  = ucZz + 3oU%,, + 15u”cl, - 2oU”’cl,, - 5u’“i 

d2, = ucZs + U‘C,~ + 15u”cl, + 5u”’c16 - SU’~C,, - U’I 

3 1  3 I‘ d24 = ucZ4 - ?U c17 - ?U i 

d2, = uc26 + 4U’c24 - $ U ’ ’ C ~ ~  - ~ u ” ‘ I  
d,, = uc,, + 15u’c2, + 30u“c2, - ~u”’c17 - T u  I5 IV I 

d3, = U C ~ ,  + Iu ’c~~  + I U “ C ~ ~  + 3 5 ~ “ ’ ~ 2 6  + 3 5 ~  I V  c24 - 3~ V ~ 1 7  - U VI I 

d34 = uc3,, + 2dc, + 15u”c2, + 2Ou”’c2+, - ~u1’cI7 - 6 V  iu I 

( A W  
(the c, are those from equations (All); the d, not mentioned in (A12) are not 
required j. 

For the 1-1 case the Qn,utu2(~)  are given by 

in the 2-2 case we find 
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and finally for the 1-2 case we have the following expression 
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